Measurement

Review: Length

- What's perimeter?
 - Perimeter is the distance around the outside of a closed shape

Metric units of length

5.5.25

Circumference of Circle

Lengths of a Circle

- circumference: perimeter of a circle
- radius: distance from circle's centre to its edge
- **diameter**: distance from one end of the circle to the other, through the centre

Circumference Formula

- Circumference $=\pi d$
- Circumference $=2\pi r$
 - \circ Where, d = diameter, r = radius (remember: diameter = 2 imes radius) and $\pi pprox 3.14$

Remembering Pi π

- irrational number but approximately 3.14
- π is on your calculator: Let's find it
- In most calculators, it's on the bottom near the right of the numbers
- ullet Press SHIFT then $imes 10^x$

radius is some length some angle size

Perimeter of a Sector

• Remember: Circumference = $2\pi r$

• Arc-length =
$$\frac{\theta}{360^{\circ}} \times 2\pi r$$

• Perimeter = arc-length + 2r

Perimeter of a sector =
$$2r + rac{ heta}{360^{\circ}} imes 2\pi r$$

- \circ where r is the radius and heta is the angle of the sector
- Note: θ is not 0: it is a Greek symbol that just looks similar

What's the relationship between o, a and h?

Mr. Smith covered these

Review: Pythagoras' theorem

$$a^2 + b^2 = c^2 \ a^2 = c^2 - b^2$$

$$a^2 = c^2 - b^2$$

where a and b are the short sides and c is the hypotenuse

Example 13 Finding side lengths using Pythagoras' theorem

Find the length of the unknown side in these right-angled triangles, correct to two decimal places.

Pythagoras 3D

How would we find the diagonal of this cuboid?

• What can we find first?

Using Pythagoras's theorem, we can find the diagonal of the bottom face

- What's next?
- What's the angle between the bottom face and the height (z)?

So, we can use Pythagoras's theorem in this 3rd dimension!

• What's our *a* and *b*?

$$\bullet \ a = \sqrt{x^2 + y^2}$$

$$egin{aligned} ullet c^2 &= a^2 + b^2 \ &\circ &= (\sqrt{x^2 + y^2})^2 + z^2 \end{aligned}$$

$$b=z$$

(Pythagoras's Theorem)

$$egin{aligned} ullet c^2 &= (\sqrt{x^2 + y^2})^2 + z^2 \ &\circ &= x^2 + y^2 + z^2 \end{aligned}$$

Taking the squareroot of both sides

$$ullet c = \sqrt{x^2 + y^2 + z^2}$$

• quite elegant!

Area: Unit Conversion

Think: Am I going from bigger to smaller?

• Then there will be more units

8.5.25

Areas of 2D shapes

Parallelogram Rhombus

Kite

Trapezium

$$A = b \times h$$

$$A = \frac{x \times y}{2}$$

$$A = \frac{x \times y}{2}$$

$$A = \frac{a+b}{2} \times h$$

Area =
$$\frac{x \times y}{2}$$

rhombus

$$\frac{1}{2}(a+b) \times h$$
 or $\frac{(a+b) \times h}{2}$

Circle Sector $A = \pi r^2 \times \frac{\theta}{360^{\circ}}$ $A = \pi r^2$ 144° -r = 3 cm -

Accuracy

- In 1856, the Surveyor General of India Andrew Waugh measured
 Mt. Everest as exactly 29,000 ft
- But he announced it was 29,002 ft so people wouldn't think it was an estimate
- Historians called him "the first person to put two feet on top of Mount Everest"
- What does accuracy mean?
 - the measure of how close a recorded measurement is to the exact measurement

12.5.25

What could cause inaccurate readings?

- Faulty instruments
- Environmental factors: e.g. wind or uneven surface
- Procedural error, e.g. Parallax
- Human error, e.g. rounding or typos

A egg's length was recorded as 6.0cm, correct to the nearest millimetre.

- a) What units were used when measuring?
- b) What is the largest decimal that would have resulted in 6.0cm?
- c) What is the smallest decimal that could be rounded to this value?
- d) What mistakes could be made in measuring that would lead to an inaccurate reading?

KEY IDEAS

- The **limits of accuracy** tell you what the upper and lower boundaries are for the true measurement.
 - Usually, it is ± 0.5 × the smallest unit of measurement.
 For example, when measuring to the nearest centimetre, 86 cm has limits from 85.5 cm up to (but not including) 86.5 cm.

• When measuring to the nearest millimetre, the limits of accuracy for 86.0 cm are 85.95 cm to 86.05 cm.

- Errors can also occur in measurement calculations that involve a number of steps.
 - It is important to use exact values or a large number of decimal places throughout calculations to avoid an accumulated error.

Accumulated Errors

Complete these calculations.

- a. i. 8.7×3.56 , rounded to one decimal place
 - ii. Take your rounded answer from part a. i., multiply it by $1.8\,\mathrm{and}$ round to one decimal place.
- b. i. 8.7×3.56 without rounding
 - ii. Take your exact answer from part b. i., multiply it by $1.8\,\mathrm{and}$ round to one decimal place.
- c. Compare your answers from parts a. ii. and b. ii. What do you notice? Which answer is more accurate?

Surface Area of Prisms and Cylinders

What is a **prism**?

- A solid 3d shape with a cross-section that is a polygon
 - o cross-section: what you get when you slice a shape like bread

Prism: a solid with a uniform polygonal cross-section

Prism		
Cross Section		

Mr. Smith covered these

Finding the Surface Area of a Prism

These are the **nets** of different prisms: the unfolded surfaces

To find the surface area, we find and add up the areas of each shape
that makes up the prism's surface

What is a cylinder?

Like a circular 'prism': with a uniform circular cross-section

Surface Area

Formula

Area of the circles = πr^2 each

Area of the "tube" = $2\pi rh$ (Why?)

(We can unfold it into a rectangle with the circumference as a side)

Put together, we get:

$$A = 2\pi r^2 + 2\pi rh$$

Composite Solids

Composite solids are solids made up of two or more basic solids.

- To find a surface area do not include any common faces.
 - In this example, the top circular face
 area of the cylinder is equal to the
 common face area, so the Surface
 area = surface area of prism + curved surface area
 of cylinder.

Surface Area: Pyramids and Cones

To find the area of a pyramid, we find

- 1. The area of the triangular sides
- 2. The area of the base

The number of triangular sides will depend on the type of pyramid.

Cones

- a solid with a circular base
- a curved surface that reaches from base to apex (top point).
- A right cone has its apex directly above the centre of the base.
 - \circ s = the slant height
 - \circ r = radius of the base.

Surface Area

- The net of a cone is the circle at the base and a sector
- What's the arc of the sector?
 - The arc wraps around the circumference of the base circle
 - \circ So the arc length is $2\pi r$
 - And the radius is s because we unwrap it from the slant

So what's the area of the sector?

- Area of the sector = $\pi s^2 imes rac{ heta}{360^\circ}$
- But we don't know θ
- But! We do know the arc length
- ullet Formula for arc of the sector = $2\pi s imes rac{ heta}{360^{\circ}}$
- Actual arc = $2\pi r$
- ullet So, $2\pi s imes rac{ heta}{360^{\circ}}=2\pi r$
- ullet Cancelling, we get $s imes rac{ heta}{360\degree} = r$
- ullet Dividing s from both sides, we get $rac{ heta}{360^{\circ}}=rac{r}{s}$
- So, our area is $\pi s^2 imes \frac{\theta}{360^\circ} = \pi s^2 imes \frac{r}{s} = \pi r s$

Now let's put that together with the base circle

- Area of the base circle = πr^2
- Adding to the area we just found, we get
- Surface Area of a Cone = $\pi r^2 + \pi r s = \pi r (r+s)$

Volume and Capacity: Units

- Metric units for **volume**: km³, m³, cm³, mm³
- Units for capacity: megalitres (ML), kilolitres (kL), litres (L) and millilitres (mL).
 - \circ 1 cm³ = 1 mL

15.5.25

Which holds more?

Volume experiment

Volume: Prisms and Cylinders

How does the volume change if the base or height changes?

Volume = Area of base ×Height

Formally:

- For right prisms and cylinders, the volume V=Ah, where:
 - \circ A is the area of the base
 - h is the perpendicular height.

right rectangular prism

$$V = Ah$$

= lbh

right square prism

$$V = Ah$$
$$= x^2h$$

right cylinder

$$V = Ah$$
$$= \pi r^2 h$$

Volume: Pyramids and Cones

- What fraction are the triangular prism (blue) and pyramid (green) of the cube?
- How do we know?

19.5.25

For pyramids and cones the volume is given by $V = \frac{1}{3}Ah$, where *A* is the area of the base and *h* is the perpendicular height.

right square pyramid

$$V = \frac{1}{3}Ah$$
$$= \frac{1}{3}x^2h$$

right cone

$$V = \frac{1}{3}Ah$$
$$= \frac{1}{3}\pi r^2 h$$

Volume of Spheres

Pull the sphere out of the water.

Discover the formula for finding the volume of a sphere.

Volume of cylinder $= 2\pi r^3$

Volume of sphere
$$=$$
 Volume of cylinder $-$ Volume of water $=$ $2\pi r^3 - \frac{1}{3} \left(2\pi r^3\right)$ $=$ $2\pi r^3 - \frac{2}{3} \pi r^3$ $=$ $\frac{4}{3} \pi r^3$

The only dimension of a sphere is its radius r

The surface area is given by

$$A=4\pi r^2$$

The volume is given by

$$V=rac{4}{3}\pi r^3$$

